momi: a new method for computing the multipopulation sample frequency spectrum

John Kamm¹, Jonathan Terhorst¹ and Yun S. Song¹,²,³

Departments of ¹Statistics, ²EECS, Integrative Biology, University of California, Berkeley
Departments of ³Math, Biology, University of Pennsylvania

Sample Frequency Spectrum (SFS)

- Distribution of counts of mutant alleles observed at a site
- Used to summarize genetic data and infer biological parameters
- momi (MOdel for I nference) is a program to compute the SFS for a neutral site under:
 - population size changes (including exponential growth)
 - population splits and mergers
 - pulse migration and admixture events

Our approach

- View demography as graphical model, apply variable elimination
 - aka “tree-peeling” when the demography is a tree
 - Represent allele frequencies with Moran model
 - Equivalent to using the coalescent
- Polanski-Kimmel equations
- Quickly and stably compute mutations arising in each subpopulation
- Automatic differentiation to compute gradient and Hessian

Demographic history as graphical model

- Moran model is a finite population model where lineages copy alleles onto each other at some rate λ.
- We model alleles within each vertex v by a Moran model with n_v lineages.
 - $n_v =$ number of samples with some ancestry in v
 - Copying rate $\lambda = \frac{1}{N(t)}$ inverse population size
- Kingman’s coalescent embedded within Moran model via sample genealogy.
 - \Rightarrow Moran is equivalent to using coalescent

Comparison with other population genetic models

- Moran model: $O(n_v)$ states per vertex
 - # derived alleles at time t
- Coalescent: $O(n_s^2)$ states per vertex
 - # ancestors and # derived alleles at time t
- Diffusion: $O(D)$ states per vertex
 - Continuous state space: fraction of population with derived allele
 - “Discretize” into D states
 - Typically $D \gg n_v$

Inference

- Use automatic differentiation to compute gradient
- Infer parameters via hill-climbing algorithm

Example demography with 18 parameters:
- Simulated 10 datasets with ms
 - $n =$ 10 samples per deme in Africa, East Asia, Melanesia, Europe.
 - $n =$ 2 samples per deme in Neanderthal, Denisova.
- For each dataset:
 - Choose random initial parameters (shown in blue)
 - Find local optimum (shown in red) with single run of a conjugate gradient method
 - On average, each dataset had 186505.9 SNPs and 1516.3 observed SFS entries.
 - Average running time of parameter search on a single dataset (start to finish) was 13.3 hours.

This research is supported by the NIH, the Packard Fellowship for Science and Engineering, a Miller Research Professorship, and a Citadel Fellowship.

[Email: {jkamm,terhorst,yss}@stat.berkeley.edu]