

momi: a new method for computing the multipopulation sample frequency spectrum

John Kamm¹, Jonathan Terhorst¹ and Yun S. Song^{1,2,3}

Departments of ¹Statistics, ²EECS, Integrative Biology, University of California, Berkeley Departments of ³Math, Biology, University of Pennsylvania

Sample Frequency Spectrum (SFS)	Our approach
 Distribution of counts of mutant alleles observed at a site Used to summarize genetic data and infer biological parameters momi (MOran Models for Inference) is a program to compute the SFS for a neutral site under: population size changes (including exponential growth) population splits and mergers pulse migration and admixture events 	 View demography as graphical model, apply variable elimination aka "tree-peeling" when the demography is a tree Represent allele frequencies with Moran model Equivalent to using the coalescent Polanski-Kimmel equations Quickly and stably compute mutations arising in each subpopulation Automatic differentiation to compute gradient and Hessian

Demographic history as graphical model

(a) A demographic history with 18 parameters, very loosely based on human history. All parameters are in coalescent-scaled units.

(b) The same history, represented as a graphical model. The SFS is then computed via variable elimination. Each vertex represents the allele frequency of a particular subpopulation at a particular point in time.

Comparison with other population genetic models

Moran model is a finite population model where lineages copy alleles onto each other at some rate λ .

We model alleles within each vertex v by a Moran model with n_v lineages.

• n_v = number of samples with some ancestry in v • Copying rate $\lambda = \frac{1}{N(t)}$ inverse population size

Kingman's coalescent embedded within Moran model via sample genealogy.

 $\bullet \Rightarrow$ Moran is equivalent to using coalescent

----->

Moran model: $O(n_v)$ states per vertex • # derived alleles at time t

Coalescent: $O(n_v^2)$ states per vertex # ancestors and # derived alleles at time t

Diffusion: O(D) states per vertex Continuous state space: fraction of population with derived allele • "Discretize" into *D* states • Typically $D \gg n_v$

Inference

Moran model

Use automatic differentiation to compute gradient Infer parameters via hill-climbing algorithm

Example demography with 18 parameters:

- Simulated 10 datasets with ms
 - n = 10 samples per deme in Africa, East Asia, Melanesia, Europe.
 - n = 2 samples per deme in Neanderthal, Denisova.

Growth asia-	Growth europe-	Growth melanesia-	N africa-	N ancestral-	N asia bottleneck-	N europe bottleneck-	N melanesia bottleneck-	N out of africa-	p denisova pulse-	p neander pulse-	t ancestor-	t denisova-neander split-	t denisova pulse-	t europe-asia split-	t melanesia split-	t neander pulse-	t out of africa-	

• For each dataset:

Choose random initial parameters (shown in blue)

• Find local optimum (shown in red) with single run of a conjugate gradient method

- On average, each dataset had 186505.9 SNPs and 1516.3 observed SFS entries.
- Average running time of parameter search on a single dataset (start to finish) was 13.3 hours.

This research is supported by the NIH, the Packard Fellowship for Science and Engineering, a Miller Research Professorship, and a Citadel Fellowship.

{jkamm,terhorst,yss}@stat.berkeley.edu