Pairwise likelihoods
- Recombination maps often estimated by combining likelihoods at pairs of SNPs within a composite likelihood:
 \[L(\rho) = \prod_{a \neq b} P(n_{ab}; \rho_{ab}) \]
- Previous methods to compute \(P(n_{ab}; \rho_{ab}) \) assume constant population size, leading to inaccuracies such as spurious recombination hotspots.
- Our new method **LDpop** computes pairwise likelihoods under changing population size, improving the accuracy of inferred maps.

An exact formula for \(P(n, \rho) \)
We compute \(P(n_{ab}; \rho_{ab}) \) by constructing a process \(\{M_t\} \) that contains the 2-locus coalescent embedded within it.
- \(\{M_t\} \) constructed in 2 steps: step A constructed backwards-in-time, step B constructed forwards-in-time.
- \(P(M_0) \) given by a product of sparse matrix exponentials:
 \[P(M_0 = n, \rho) = \left(\prod_{d=1}^{D} e^{\lambda_d} \right) v \]
 where \(D \) is the number of population size changes.

A fast approximation \(\hat{P}(n, \rho) \)
- We also develop a fast approximation based on a Moran model with \(N \geq n \) particles.
- Computed with a similar product of sparse matrix exponentials,
 \[\hat{P}(n, \rho)_n = \left(\prod_{d=1}^{D} e^{\tilde{\lambda}_d} \right) v \]
 but the matrices \(\tilde{\lambda}_d \) are much smaller.

The error in the approximation disappears as \(N \to \infty \). In practice, the approximation is good even when \(N = n \).

Simulation study: using LDpop improves accuracy
- Simulated datasets with \(n = 20 \) haplotypes under demography \(\eta(t) \):
 \[\eta(t) = \begin{cases} 10^6, & t < 10^5 \text{ gens ago} \\ 10^5, & 1.16 \times 10^5 < t \geq 10^5 \text{ gens ago} \\ 10^3, & t \geq 1.16 \times 10^5 \text{ gens ago} \end{cases} \]
- Inferred \(\hat{\eta} \) by computing lookup tables \(\hat{P}(n, \rho)_{n_0} \) under LDpop and providing them to composite likelihood methods LDhat, LDhelmet.
- Using the true or estimated demography \(\eta(t) \) is more accurate than assuming constant \(\eta \).

Runtime to compute lookup tables
- Time to compute \(\hat{P}(n, \rho) \) for \(n = 20 \), exact formula

LDpop: 2-locus likelihoods for recombination map estimation under variable population size
John Kamm¹, Jeffrey Spence², Jeffrey Chan¹, and Yun S. Song¹,³

¹EECS, ²Computational Biology @ UC Berkeley; ³Math, Biology @ UPenn

Contributed equally

https://github.com/popgenmethods/ldpop

This research is supported by NIH grant R01-GM108805, NIH training grant T32-HG000047, and a Packard Fellowship for Science and Engineering.

jkamm, spence.jeffrey, chanjed, songyss@berkeley.edu