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Joint site frequency spectrum (SFS)
Distn. of SNP derived allele counts x
Can be used to infer demographic his-
tory
Computed under coalescent model

x = (x1, x2, x3) = (1,1,0)
n = (n1,n2,n3) = (2,2,1)

SFS = P(x)

Ancient DNA
Added resolution and power

See further into the past
Can estimate dates without mutation rates
Modern pops can be modeled as mixture of an-
cient pops

But errors, bias distort SFS
Differences in coverage

Different rates of variant discovery
Deamination

momi: compute SFS using Moran model + Bayesian graph

1. Represent demography as DAG 2. Convert DAG to tree
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(a) A demographic history with lookdown Moran model. µv
0 is the number of derived alleles (blue

stars) at the bottom of population v. The observed configuration is x = (µ1
0, µ

2
0, µ

3
0) = (1, 1, 0). The

coalescent is in solid lines.
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(b) The DAG G. Each vertex v corresponds to
a population, with a path from v to w i↵ w has
ancestry in v.
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(c) The event tree T . Each internal v corresponds
to a join or split event, and is labeled by a subset
of contemporaneous populations.

Figure 2: Summary of important notation and data structures. (TODO: change the pulse so there
is positive time between the split and join) (TODO: make the non-ancestral alleles have
empty filling)

Algorithm 1 defines a dynamic program (DP) over `v,0
µ , ⇠v, using equations (1), (2), (3), (4), (5), (6)

to be defined shortly. For appropriate inputs the DP computes the SFS:

Theorem 1. For polymorphic x = (x1, . . . , xD) 6= 0,n and leaf population d 2 {1, . . . , D}, let exd
=

(0, . . . , 1, . . . , 0) 2 R(nd+1) have 1 at coordinate xd and 0 elsewhere. Then

⇠x = DP(ex1
, . . . , exD ).

We now present the formulas used by Algorithm 1, in a series of lemmas that also prove Theorem 1.
We start with a formula to compute ⇠v from `v,0

µ and the partial SFS at the child events CT (v).

Lemma 1. For v 2 V (T ) and w =
S

CT (v) = {w 2 V (G) | w 2 w0,w0 2 CT (v)},

⇠v = ⇠w +
X

v2v\w

nvX

k=1

fv
nv

(k)`v,0
kev

(1)

3. Compute likelihoods at each node

Likelihoods and other statistics

momi algorithm is a DP on
the tree
To compute P(x1, x2, x3):

set leafs to ex1,ex2,ex3

Propagate likelihoods up tree
“Tree-peeling”

Also efficiently compute:
Total branch length
TMRCA
f2, f3, f4 statistics
FST
Tajima’s D
E[f (X1)g(X2)h(X3)]

Estimating ”Basal Eurasian” gene flow

Mbuti
LBK Sardinian

Loschbour

MA1 Han UstIshim
Neanderthal
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Lazaridis et al 2014, 2016: f4(HG,Farmer ;East ,Out) < 0;
Posit “Basal Eurasian” component in Europe/Middle East

We estimated parameters for 8 population model with SFS
Used 300 nonparametric bootstraps for confidence intervals

Correcting Coverage & Ascertainment Bias

Ascertain in high-coverage
Random allele call in low cov-
erage
Normalize by subtree
branch length to com-
pute conditional probability
P(x | x1, x2, x3 polymorphic)

Assessing model fit
ABBA/BABA statistics

Like qpGraph (Patterson et al., 2012), but with recent mutations
Compare model expectation to observed ABBA/BABA

Basal Eurasian model fits reasonably well
|Z | < 3.2 (p > .05 after Bonferonni)

Pairwise similarity
Comparing expectation to observed, Mbuti and Sardinian have excess
pairwise similarity; UstIshim has excess dissimilarity

Mutation rate estimation
We used the expected within-population nucleotide diversity to estimate mutation rate. We estimated 1.11 to 1.26× 10−8 depending
on which populations we included in the model.
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